
LA-UR-22-21007
Approved for public release; distribution is unlimited.

Title: Profiling and Optimization

Author(s): Li, Ying Wai

Intended for: Simulating Physics using Efficient and Effective code Development
(SPEED) program. This is a LANL internal lecture series for
computational science application developers

Issued: 2022-02-07

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

in Slide, you

logo/management

use one of the two

Los Alamos National Laboratory

Profiling and Optimization

Ying Wai Li (CCS-7)

February 1, 2022

SPEED Lecture Series

Los Alamos National Laboratory

2/1/22 | 2

I have a performance profile of my code. Now what?

• Look for the part that uses most computing time or memory transfer
• Observe the nature of tasks
o DO loops/for loops?
o How is the memory access pattern like?
o I/O?

• Optimization techniques:
o Make good use of compilers
o Optimize memory access
o Vectorization
o Parallelization
o I/O optimization

Los Alamos National Laboratory

2/1/22 | 3

Important elements to look for

For serial codes:
• Hotspots

Location (routines or lines) where most time is spent
• Loop structures

Identify candidates for parallelization (threading and vectorization)
• Are there bottlenecks in the logical flow?

e.g. C++ locks, mutex and futures
For parallel codes:
• MPI message passing

Size of messages, where most communication is performed
• Load imbalance
• Overlapping of computation and communication

Los Alamos National Laboratory

2/1/22 | 4

Do less work!

• Simplify expressions

𝑥 = 𝐴𝑐𝑒!"

𝐴 = −
1
𝑐
𝑒!#

𝑥 = −𝑒!(#%")

b = 2.0

c = 3.0

A = -1.0/c * exp(c*b)

x = A*c*exp(c*y)

5 multiplications, 1 division, 2 exponentials

x = -exp(c*(b+y))

1 multiplications, 1 addition, 1 exponential

Los Alamos National Laboratory

2/1/22 | 5

Do less work!

• Common subexpression elimination

• Avoid expensive operations

x = cos(v)*(1+sin(u/2)) + sin(w)*(1-sin(u/2))

t = sin(u/2)

x = cos(v)*(1+t) + sin(w)*(1-t)

y = x**2

y = x*x

y = x/10

y = 0.1*x

Los Alamos National Laboratory

2/1/22 | 6

Single Instruction Multiple Data (SIMD)

for (i=0; i<100; ++i)

c[i] = a[i] + b[i];

1 2 3 4 5 … … 100a
+

2 4 6 8 10 … … 200b

=

3 6 9 12 15 … … 300c

Single instructionMultiple data

DO i = 1, 100

c[i] = a[i] + b[i]

END DO

Los Alamos National Laboratory

2/1/22 | 7

Aside: Row-major order vs column-major order

Different ways to store multidimensional arrays in linear storage
• Row-major order: (C/C++, Python, Numpy)

• Column-major order: (Fortran, MATLAB, R, Julia)

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12 a13 a21 a22 a23 a31 a32 a33

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a21 a31 a12 a22 a32 a13 a23 a33

Los Alamos National Laboratory

2/1/22 | 8

Example: Matrix-matrix multiplication

// Matrices A, B, and C initialized

for (int k=0; k<N; ++k) {
for (int j=0; j<N; ++j) {

for (int i=0; i<N; ++i) {
A[i][j] += B[i][k] * C[k][j];

}
}

}

! Matrices A, B, and C initialized

DO k = 1, N
DO j = 1, N

DO i = 1, N
A(i,j) = A(i,j) + B(i,k) * C(k,j)

END DO
END DO

END DO

C++:

Fortran 90:

Question 1:
Are these two programs the same?

= + ✖

A A B C

Question 2:
Which one is better? Why?

Question 3:
How can we optimize them?

Los Alamos National Laboratory

2/1/22 | 9

Loop reordering
Useful when you want to:
• get contiguous memory access
• vectorize on one of the indices

How will you improve the previous C++ matrix multiplication code?

// Matrices A, B, and C initialized

for (int k=0; k<N; ++k) {
for (int j=0; j<N; ++j) {

for (int i=0; i<N; ++i) {
A[i][j] += B[i][k] * C[k][j];

}
}

}

// Matrices A, B, and C initialized

for (int k=0; k<N; ++k) {
for (int i=0; i<N; ++i) {

for (int j=0; j<N; ++j) {
A[i][j] += B[i][k] * C[k][j];

}
}

}

// Matrices A, B, and C initialized

for (int k=0; k<N; ++k) {
for (int j=0; j<N; ++j) {

for (int i=0; i<N; ++i) {
A[i][j] += B[i][k] * C[k][j];

}
}

}

Los Alamos National Laboratory

2/1/22 | 10

Loop unrolling
Useful when you want to:
• increase computational intensity within a loop
• give compiler more operations to shuffle around to get more overlaps

! Matrices A, B, and C initialized
DO k=1,N

DO j=1,N
DO i=1,N

A(i,j)=A(i,j) + B(i,k)*C(k,j)
END DO

END DO
END DO

! Matrices A, B, and C initialized
DO k=1,N-3,4

DO j=1,N
DO i=1, N

A(i,j)=A(i,j) + B(i,k)*C(k,j)
+ B(i,k+1)*C(k+1,j)
+ B(i,k+2)*C(k+2,j)
+ B(i,k+3)*C(k+3,j)

END DO
END DO

END DO
DO kk=k,N

DO j=1,N
DO i=1,N

A(i,j)=A(i,j) + B(i,kk)*C(kk,j)
END DO

END DO
END DO

Note:
Computational intensity = floating point operations

memory operations

How will you improve the previous
Fortran matrix multiplication code?

Los Alamos National Laboratory

2/1/22 | 11

Avoid conditionals/branches within loops
• Helps compiler vectorize the code
• For loop-independent if’s:
o remove (replace with intrinsics like MAX, MIN, ABS, or mathematical expressions)
o pull them out from the loop

DO k=1,N
DO j=1,N

DO i=1,N
IF (case==1) THEN

A(i,j)=A(i,j) + B(i,k)*C(k,j)
ELSE

A(i,j)=A(i,j) + B(i,k)*D(k,j)
END IF

END DO
END DO

END DO

IF (case==1) THEN
DO k=1,N

DO j=1,N
DO i=1,N

A(i,j)=A(i,j) + B(i,k)*C(k,j)
END DO

END DO
END DO

ELSE
DO k=1,N

DO j=1,N
DO i=1,N

A(i,j)=A(i,j) + B(i,k)*D(k,j)
END DO

END DO
END DO

END IF

DO k=1,N
DO j=1,N

DO i=1,N
IF (case==1) THEN

A(i,j)=A(i,j) + B(i,k)*C(k,j)
ELSE

A(i,j)=A(i,j) + B(i,k)*D(k,j)
END IF

END DO
END DO

END DO

Los Alamos National Laboratory

2/1/22 | 12

Avoid conditionals/branches within loops
• For loop-dependent if’s:
o remove (replace with intrinsics like MAX, MIN, ABS, or mathematical expressions)

• Example: 2D Ising model with periodic boundary conditions
int spin[Size][Size];
……
for (x=0; x<Size; ++x) { // Energy calculation

if (x!=0) xLeft = x-1;
else xLeft = Size-1;
for (y=0; y<Size; ++y) {

if (y!=0) yBelow = y-1;
else yBelow = Size-1;
E += spin[x][y]*(spin[xLeft][y]+spin[x][yBelow]);
M += spin[x][y];

}
}
E *= -J;

How will you vectorize the energy calculation?

Los Alamos National Laboratory

2/1/22 | 13

Avoid conditionals/branches within loops
• For loop-dependent if’s:
o remove (replace with intrinsics like MAX, MIN, ABS, or mathematical expressions)

• Example: 2D Ising model with periodic boundary conditions
int spin[Size+2][Size+2]; // Create buffer halo space
for (x=0; x<Size; ++x) { // Copy the spins to the halos

spin[x][0] = spin[x][Size];
spin[x][Size+1] = spin[x][1];

}
for (y=0; y<Size; ++y) {

spin[0][y] = spin[Size][y];
spin[Size+1][y] = spin[1][y];

}
for (x=1; x<Size+1; ++x) { // Energy calculation

if (x!=0) xLeft = x-1;
else xLeft = Size-1;
for (y=1; y<Size+1; ++y) {

if (y!=0) yBelow = y-1;
else yBelow = Size-1;
E += spin[x][y]*(spin[x-1][y]+spin[x][y-1]);
M += spin[x][y];

}
}
E *= -J;

Los Alamos National Laboratory

2/1/22 | 15

Loop splitting
• Useful when you want to:

• remove non-vectorizable components from large computational loops
• split non-tightly nested loops

• Caveat: does not always work because it increases memory movements

cmax = 0.0; imax = -1;

for (i=0; i<1000000; ++i){

ctmp = a[i] + b[i];

if (ctmp > cmax) {

cmax = ctmp;

imax = i;

}

}

cmax = 0.0; imax = -1;

for (i=0; i<1000000; ++i)

c[i] = a[i] + b[i];

for (i=0; i<1000000; ++i){

if (c[i] > cmax) {

cmax = c[i];

imax = i;

}

}

vectorizable

Los Alamos National Laboratory

2/1/22 | 16

Loop splitting
• Useful when you want to:

• remove non-vectorizable components from large computational loops
• split non-tightly nested loops

• Caveat: does not always work because it increases memory movements

for (i=0; i<N; i++){

a[i] = b[i]*2.0;

for (j=0; j<M; j++){

c[i,j] = d[j] + a[i];

}

}

vectorizable
for (i=0; i<N; i++){

a[i] = b[i]*2.0;

}

for (i=0; i<N; i++){

for (j=0; j<M; j++){

c[i,j] = d[j] + a[i];

}

}

vectorizable

Los Alamos National Laboratory

2/1/22 | 17

Loop fusion
• Useful when you want to:

• get better cache utilization or reuse by minimizing loads and stores
• increase computational intensity within a loop

for (i=0; i<N; ++i){

for (j=0; j<M; ++j){

a[i,j] = b[i] + c[j];

}

}

for (i=0; i<N; ++i){

for (j=0; j<M; ++j){

d[i,j] = b[i] – c[j];

}

}

for (i=0; i<N; ++i){

for (j=0; j<M; ++j){

a[i,j] = b[i] + c[j];

d[i,j] = b[i] – c[j];

}

}

Los Alamos National Laboratory

2/1/22 | 18

Inline functions

• A good trick to optimize C++ applications that call small functions
• Eliminate function-call overhead
• Allow the compiler to resolve data dependencies
• How to use:

1. Define the function as an inline function

2. Use compiler flags
Cray: -hipa[n]. -hipa0 ignores all inlining directives; -hipa5 most aggressive
Intel: -inline
GCC: -finline-functions

3. Use compiler directives
Cray: #pragma inline_enable

inline float add(float a, float b){
return a+b;

}

float add(float a, float b){
return a+b;

}

Los Alamos National Laboratory

2/1/22 | 19

Make good use of compiler flags and directives

• Modern compilers do many of the optimization techniques
e.g. loop reordering, unrolling, inlining, etc.

• Can be explicitly specified by the use of directives
• Some common optimization flags to use:

§ -O0, -O1, -O2, -O3, -Ofast

§ -funroll-loops

• Quick C++ benchmark: http://quick-bench.com/
An online tool to examine and benchmark effects of different compilers
and optimization levels

• Compiler explorer: https://gcc.godbolt.org/
A website for exploring different compilers and how they generate
assembly codes

http://quick-bench.com/
https://gcc.godbolt.org/

Los Alamos National Laboratory

2/1/22 | 20

Aside: How compilers optimize a code?
• To generate vector instructions, compilers:

1. Identify a construct that performs a series of similar operations
(typically a loop)

2. Perform data dependency analysis
• To convert a series of operations into a vector operation, the operations have to

work on a set of data that have been computed upfront
Some good practices:

1. Write codes in a way that hints/makes the compilers to vectorize
2. Avoid items that prevent vectorization by the compiler

• Loop-carried dependencies
• Indirect addressing
• Excessive gathers/scatters/striding within a loop
• Complex decision processes in a loop

3. Read documentations: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

DO i = 1, N
a(ia(i)) = b(ib(i)) + c(ic(i))

END DO

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

